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Abstract. Using the optimal fluctuation method, we evaluate the short-
time probability distribution P (H̄,L,t= T ) of the spatially averaged height

H̄ = (1/L)
´ L
0
h(x,t= T )dx of a one-dimensional interface h(x,t) governed by

the Kardar–Parisi–Zhang equation

∂th= ν∂2
xh+

λ

2
(∂xh)

2+
√
Dξ (x,t)

on a ring of length L. The process starts from a flat interface, h(x,t= 0) = 0. Both
at λH̄ < 0 and at sufficiently small positive λH̄ the optimal (that is, the least-
action) path h(x,t) of the interface, conditioned on H̄, is uniform in space, and
the distribution P (H̄,L,T ) is Gaussian. However, at sufficiently large λH̄ > 0 the
spatially uniform solution becomes sub-optimal and gives way to non-uniform
optimal paths. We study these, and the resulting non-Gaussian distribution
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P (H̄,L,T ), analytically and numerically. The loss of optimality of the uniform
solution occurs via a dynamical phase transition of either first or second order,
depending on the rescaled system size ℓ= L/

√
νT , at a critical value H̄ = H̄c(ℓ).

At large but finite ℓ the transition is of first order. Remarkably, it becomes an
‘accidental’ second-order transition in the limit of ℓ→∞, where a large-deviation
behavior − lnP (H̄,L,T )≃ (L/T )f(H̄) (in the units λ= ν =D = 1) is observed.
At small ℓ the transition is of second order, while at ℓ=O(1) transitions of both
types occur.

Keywords: large deviations in non-equilibrium systems, growth processes,
fluctuation phenomena
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1. Introduction

Atypically large fluctuations in macroscopic systems out of equilibrium continue to
attract great interest from statistical physicists. Although a universal description of
such fluctuations is unavailable, there has been much progress in studies of particular
systems. One of the main theoretical tools in this area is known under different names
in different areas of physics: the optimal fluctuation method (OFM), the instanton
method, the weak-noise theory, the macroscopic fluctuation theory, etc. This method
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relies on a saddle-point evaluation of the pertinent path integral of the stochastic pro-
cess, conditioned on the large deviation. The method is based on a model-specific small
parameter (often called ‘weak noise’), and it brings about a conditional variational
problem. The solution of this problem—a deterministic, and in general time-dependent,
field—describes the ‘optimal path’ of the system: the most probable system’s history
that dominates the contribution of different paths to the statistics in question.

Among multiple applications of the OFM, we focus on one set of problems which
has attracted attention in the last two decades [1–22]: short-time large deviations of
a stochastically growing interface as described by the one-dimensional Kardar–Parisi–
Zhang (KPZ) equation [23]

∂th= ν∂2
xh+

λ

2
(∂xh)

2+
√
Dξ (x,t) , (1)

where ξ(x,t) is a white noise with

⟨ξ (x,t)⟩= 0, ⟨ξ (x,t)ξ (x ′, t ′)⟩= δ (x−x ′)δ (t− t ′) . (2)

Here we employ the OFM to study a KPZ interface on a ring of length L, i.e. with
periodic boundary conditions at x =0 and x =L. The interface is initially flat,

h(x,t= 0) = 0, (3)

and we are interested in evaluating the probability density function (PDF) P
(
H̄,L,T

)
of the spatially averaged surface height

H̄ =
1

L

ˆ L

0

h(x,T ) dx (4)

at a final time t= T > 0, which is much shorter than the characteristic nonlinear time
of equation (1), τNL = ν5/D2λ4. The short-time limit allows one to employ the OFM in
a controlled manner [1–5, 7, 9–12, 14–20, 22], as we will reiterate shortly. The problem,
defined by equations (1)–(4), continues the line of study in [10, 22] of finite system-size
effects (which turn out to be quite dramatic) in large deviations of height of the KPZ
interface.

Upon rescaling t → tT, x→ (νT )1/2x, h→ νh/λ and ξ →
(
νT 3

)−1/4
ξ, equation (1)

becomes

∂th= ∂2
xh+

1

2
(∂xh)

2+
√
εξ (x,t) , (5)

with rescaled noise strength ε=Dλ2T 1/2/ν5/2 on a ring of rescaled length ℓ= L/
√
νT .

The PDF of the rescaled average height H̄ at final time t =1 can then be written as a
path integral

P
(
H̄,ℓ,ε

)
=

ˆ
h(·,0)=0

Dh δ

(
1

ℓ

ˆ ℓ

0

h(x,1) dx− H̄

)
J [h] exp

{
−1

ε
S [h]

}
(6)
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with action functional

S [h] =

ˆ 1

0

dt

ˆ ℓ

0

dxL(h,∂th) =
1

2

ˆ 1

0

dt

ˆ ℓ

0

dx

[
∂th− ∂2

xh−
1

2
(∂xh)

2

]2
, (7)

where L(h,∂th) is the Lagrangian. The OFM assumes a weak-noise limit ε→ 0 when the
path integral (6) can be evaluated by the saddle-point method, while the Jacobian J [h]
does not contribute in the leading-order. In this limit, the PDF P (H̄,ℓ,ε) is dominated
by the optimal path of the system, that is by the most likely history h(x,t), conditional
on a given average height at t =1

− lnP
(
H̄,ℓ,ε

) ε→0≃ ε−1 min
h(·,0)=0,´ ℓ

0
h(x,1)dx=ℓH̄

S [h] = ε−1S
(
H̄,ℓ

)
. (8)

Hence, the PDF can be determined, up to pre-exponential factors, from the solution of
this constrained minimization problem. Here we will solve this minimization problem
numerically for different H̄ and ℓ, and analytically in the asymptotic limits of large and
small ℓ.4

It will be convenient to present our results by setting ν = λ=D = 1.5 Then the
weak-noise scaling (8) reads

− lnP
(
H̄,ℓ,ε→ 0

)
≃ T−1/2S

(
H̄,ℓ

)
. (9)

Note that the limit ε→ 0 at fixed ℓ corresponds to the short-time limit T → 0 and small-
length limit L→ 0 with L/

√
T = const. When instead T goes to zero at L= const, one

has both ε→ 0 and ℓ→∞. The latter limit turns out to be most interesting, and it is
analyzed here in detail. It is natural to expect that for any H̄, when ℓ→∞, the action
S(H̄,ℓ) should exhibit a large-deviation form

S
(
H̄,ℓ

) ℓ→∞≃ ℓf
(
H̄
)
, (10)

leading to

− lnP
(
H̄,L,T → 0

)
≃ (L/T ) f

(
H̄
)
, (11)

and this is what we indeed observe here. Less expectedly, we also find that the rate
function f(H̄) exhibits, at a critical value H̄ = H̄c(ℓ), a dynamical phase transition
(DPT) which is accidentally second-order. By that we mean that the rate function
at the critical point becomes continuously differentiable only in the limit of ℓ→∞.
At arbitrary large but finite ℓ the large-deviation form (10) breaks down. We show,
however, that the action S(H̄,ℓ) still exhibits a DPT at a critical point H̄ = H̄c, but
this DPT is of (weakly) first order and the optimal path at the critical point changes
discontinuously via a subcritical bifurcation.

4 Note that whenever there exists a spatially non-uniform optimal path there are actually infinitely many possible paths due to
the translational symmetry of the problem with respect to x. Accounting for this submanifold of degenerate solutions and for the
associated zero mode is, however, only relevant for pre-exponential factors [22], which we do not address here.
5 In most of the paper we assume, without loss of generality, that λ> 0. Indeed, changing λ to −λ is equivalent to changing h
to −h.
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Figure 1. An overview of our main results for the large-deviation problem (8) on
the (H̄,ℓ) phase diagram. In the light blue region, which extends to all H̄ < 0, the
global minimum of the action functional (7) is attained at the spatially uniform
solution (19). In the light orange region, the least-action solution h(x,t) is instead
a spatially non-uniform path with a single maximum. For small domain sizes ℓ→ 0
it is given by equation (67), and for large domain sizes it is described in section 5.1.
For small ℓ, there is a second-order DPT from the uniform to the peaked solution,
as discussed in sections 3 and 6. For large ℓ, a (weakly) first-order transition takes
place instead, at H̄ approximately given by equation (64). In the intermediate
region transitions of both first and second order occur. Here some numerical results
are available, see figure 7, but a complete understanding is lacking.

For small ℓ a truly second-order DPT is observed as predicted earlier [10, 22]. At
intermediate values of ℓ=O(1) DPTs of both types occur. In the latter regime analyt-
ical results are unavailable as of yet, and we present some numerical results. All the
DPTs that we found in this system occur because of a loss of optimality of a path that
is uniform in space. The loss of optimality takes the form either of a subcritical bifurca-
tion (for the first-order DPTs), or a supercritical bifurcation (for the true second-order
DPTs). We summarize our main results on the (H̄,ℓ) phase diagram of the system in
figure 1.

The remainder of this paper is structured as follows. In section 2 we formulate the
OFM equations and boundary conditions, present a simple uniform solution of these
equations, previously studied in [10, 22], and argue that it describes the optimal path of
the system at all λH < 0. Supercritical bifurcations of the uniform solution have recently
been studied in [22]. Still, for convenience of further discussion, we briefly rederive them
in section 3. Section 4 includes our results of numerical minimization of the action
functional (7) in different regions of the (H̄,ℓ) phase diagram. These numerical results
provided valuable insights into the nature of optimal paths of the interface which led
us to develop asymptotic analytical solutions of the OFM problem for large ℓ that we
present in section 5. The asymptotic solution for small ℓ is briefly discussed in section 6.
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We summarize and discuss our main results in section 7. A description of the numerical
algorithms that we use here is relegated to the appendix.

2. OFM equations and uniform solution

At a technical level, the main objective of this work is to determine the minimum action
S(H̄,ℓ) as a function of the rescaled average height H̄ and rescaled system size ℓ. In this
section, we present the necessary conditions for minimizers of the action functional (7),
namely the OFM equations and the boundary conditions. We argue then that a simple
spatially uniform solution of the ensuing OFM problem is always optimal for H̄ < 0.

The first-order necessary conditions for a minimizer of the action functional (7) can
be represented as a pair of Hamilton’s equations for the optimal history of the interface
h(x,t) and the conjugate momentum density p= ∂L/∂(∂th). These equations have been
derived in many papers [1–5, 7, 9–12, 14–20, 22], and they take the form

∂th= ∂2
xh+

1

2
(∂xh)

2+ p, (12)

∂tp=−∂2
xp+ ∂x (p∂xh) . (13)

The ‘momentum density’ p(x,t) describes the (rescaled) optimal realization of the
external noise ξ(x,t) that drives the interface conditional on a specified H̄. In the
present case equations (12) and (13) should be complemented by the periodic boundary
conditions at x =0 and x= ℓ, by the initial condition

h(x,0) = 0, (14)

and by the final-time condition

p(x,1) = Λ = const, (15)

which follows from the demand that a boundary term at t =1, originating from an
integration by parts, should vanish for any h(x,1). The parameter Λ is a Lagrange
multiplier which needs to be chosen so as to impose the rescaled final-time condition

1

ℓ

ˆ ℓ

0

h(x,1)dx= H̄. (16)

Once the optimal path is determined, the action S(H̄,ℓ) can be determined from the
equation

S =
1

2

1ˆ

0

dt

ℓˆ

0

dxp2 (x,t) , (17)

which follows from equations (7) and (12).
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By differentiating the action S(H̄,ℓ) = S[h(x,t;H̄,ℓ)] of the optimal profile
h= h(x,t;H̄,ℓ) with respect to H̄ using the chain rule, one can show that Λ is related
to the action via

Λ =
1

ℓ

∂S
(
H̄,ℓ

)
∂H̄

(
or dS = ℓΛdH̄

)
. (18)

If the action S(H̄,ℓ) is a strictly convex function of H̄, there is a bijective relation
between Λ and H̄, and it suffices, for the purpose of calculating the action, to only
determine H̄(Λ) and use equation (18). This shortcut is very convenient and holds for
many large-deviation calculations [24].

There is an obvious exact solution of the OFM equations and the boundary
conditions

h(x,t) = H̄t, p(x,t) = Λ, Λ = H̄, S =
ℓ

2
H̄2, (19)

that describes a uniformly growing flat interface. We will often call this branch of
solutions branch 1. By virtue of equation (8), whenever the uniform solution (19) is the
optimal one, we have a Gaussian PDF for H̄ up to pre-exponential factors. Of most
interest, however, are the regions of parameters H̄ and ℓ, for which the uniform solution
is sub-optimal. As we will see, the loss of optimality can occur via either a supercritical
or a subcritical bifurcation.

First of all, we can argue that, for negative H̄, the uniform solution (19) is always
optimal. Using the evident conservation law

1

ℓ

ˆ ℓ

0

p(x,t) dx= Λ= const (20)

of equation (13), we can rewrite the action (7) for any solution of the OFM
equations as

S =
1

2

1ˆ

0

dt

ℓˆ

0

dxp2 (x,t) = ℓ
Λ2

2
+

1

2

1ˆ

0

dt

ℓˆ

0

dx [p(x,t)−Λ]2 . (21)

Also, integrating both sides of equation (12) with respect to t from 0 to 1 and with
respect to x over the ring, and using the periodic boundary conditions and the conser-
vation law (20), we obtain

H̄ =
1

ℓ

ℓˆ

0

h(x,1) dx= Λ+
1

2ℓ

1ˆ

0

dt

ℓˆ

0

dx [∂xh(x,t)]
2 . (22)

One can easily see from equations (21) and (22) that at negative Λ (or H̄) any inhomo-
geneity in the momentum density p both increases the action S and decreases the
average height |H̄| compared with their values for the uniform solution. Therefore, any
nonuniform solution here is sub-optimal.
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In contrast to this, for Λ> 0 (or H̄ > 0) an inhomogeneity increases both S and H̄
compared with the uniform solution. A competition between these two opposite effects
may give rise to non-uniform solutions with lesser action than the uniform one, as we
will indeed see in the following.

3. Bifurcations of the uniform solution

In this brief section we carry out a linear stability analysis of the uniform solution (19).
We find that, for sufficiently large positive H̄, the uniform solution can continuously
and supercritically bifurcate to a non-uniform solution. The first spatial Fourier mode to
become unstable as H̄ increases depends on the rescaled system size ℓ in a nontrivial way
and is determined from equation (26). This equation was also obtained in [22] by calcu-
lating the leading-order prefactor correction to the asymptotic scaling in equation (8)
through Gaussian integration of fluctuations around the uniform solution (19).

At first order of a perturbation theory around the uniform solution (19) we have

p(x,t) = H̄ + b(t)cosqx, h(x,t) = H̄t+ a(t)cosqx, |a|, |b| ≪ 1. (23)

Here the wave number q spans the set 2πm/ℓ for m= 1,2, . . .. Substituting the expres-
sions (23) into equations (12) and (13) and neglecting higher-order terms, we obtain
the following system of linear ordinary differential equations:

ȧ=−q2a+ b, ḃ= q2b− q2H̄a. (24)

It has solutions proportional to eiωt, where

ω =±q

√
H̄ − q2. (25)

Using the boundary conditions (14) and (15), we obtain the following relationship
between q and H̄ = H̄c(q) at the bifurcation points:

tan

(
q

√
H̄ − q2

)
=−

√
H̄ − q2

q
. (26)

Note that the trivial solution H̄ = q2 of equation (26) does not correspond to a valid
non-uniform solution due to the boundary conditions at t =0 and 1. The resulting
dependence H̄(q) can be expressed in a parametric form

H̄ =− 2u

sin2u
, q =

√
−ucotu,

(2n− 1)π

2
< u < nπ; n= 1,2,3, . . . , (27)

where, for given ℓ, only values of q = 2πmℓ−1 with m= 1,2,3, . . . are allowed. The first
three branches of equation (27) are shown in figure 2. As one can see, the first instability
appears for n =1, and a necessary condition for the instability, for any ℓ, is H̄c ⩾ 4.603.
When ℓ→∞, the first instability of the uniform solution will occur, at H̄c ≃ 4.603, for
a very high mode m≃ 1.343ℓ/2π. For finite ℓ, one can find the bifurcation point on the
n =1 branch of equation (27) numerically. Finally, for ℓ→ 0, the first instability occurs
for the m =1 mode at H̄ ≃ (2π/ℓ)2 in agreement with [10].
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Figure 2. The supercritical bifurcation points H̄ = H̄c versus the wave number q as
predicted by equation (27) for n= 1,2 and 3. Only discrete values of q = 2πmℓ−1

with m= 1,2, . . . are allowed. The lowest curve corresponds to n =1. The black
dot indicates the global minimum of H̄c versus q, so that H̄c ⩾ 4.603 is a necessary
condition for a supercritical bifurcation of the uniform solution for any ℓ.

4. Numerical results

Now we proceed with a numerical solution of the minimization problem in equation (8)
for different H̄ and ℓ. The numerical methods that we used are described in the
appendix. In addition to confirming the supercritical bifurcations of the uniform solu-
tion that we discussed in section 3, we will uncover important subcritical bifurcations
and gain insight into non-perturbative optimal paths which will be studied analytically
in sections 5 and 6.

We start with the simpler case of small ℓ. Choosing a moderately small value ℓ=
π/8 and numerically minimizing the action (A1) for different Λ, we obtain the rate
function S(H̄,ℓ) and Lagrange multiplier Λ(H̄) shown in figure 3. The spatially uniform
solution (19), corresponding to branch 1 of the action, is seen to become unstable close
to H̄ ≃ (2π/ℓ)2, as stated in section 3, and there is a continuous (second-order) DPT to
a spatially nonuniform solution. Indeed, the (m= 1)-spatial Fourier mode of the profile
becomes unstable at this point. One such spatially nonuniform solution close to the
transition point is shown in figure 4. As H̄ increases, the optimal solution turns, for
most of the time 0< t < 1, into a stationary ‘cnoidal’ solution for p which drives an
h-profile that is non-uniform in x but is uniformly translating in the vertical direction.
The same solution appears in the problem of the one-point height distribution for the
KPZ equation on a ring [10], and we use it in section 6 to calculate the theoretical
curves in figures 3 and 4, which match the numerical results quite well.

Next, we turn to the more complicated and interesting case of large ℓ. For ℓ= 16π
the minimization of the augmented action (A2) leads to the results for the rate func-
tion S(H̄) and Lagrange multiplier Λ(H̄) shown in figure 5. In addition to branch 1
we observe two other branches of solutions. Branch 2 is observed to the right of a
narrow transition region close to H̄ ≃ 4. On this branch the action S(H̄) is approxim-
ately a linear function while Λ is almost constant. Further, for much larger H̄, there
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Figure 3. Comparison of analytical small-ℓ results (lines) and numerics (dots) for
the rate function S(H̄) (left) and Lagrange multiplier Λ(H̄) (right) for a rescaled
system size of ℓ= π/8. The numerical computations were performed at resolutions
nx = 64 and nt = 8000. The dashed vertical line indicates where the spatially uni-
form solution becomes unstable at H̄ ≃ 256.04 in agreement with equation (26).
The dotted green line corresponds to the asymptotic S(H̄) = (8

√
2/3)H̄3/2 (see

equation (73)), the gray line corresponds to the spatially uniform solution (19) and
the orange line corresponds to equations (70) and (72).

Figure 4. Numerically found spatially slightly non-uniform solution of
equations (12) and (13) for H̄ = 270.319 and a moderately small rescaled system
size of ℓ= π/8 with numerical resolutions nx = 64 and nt = 8000. The numerically
found action S = 14322.081 deviates by 0.009% from the predicted small-ℓ result
S = 14320.806 for this H̄ as given by equation (70). The action for the spatially
uniform solution (19) for the same H̄ and ℓ would be S = 14347.685. The maximum
height at final time is H =270.357. Left: optimal height profile h(x,t) at different
times t, with the maximum at each t subtracted in order to emphasize deviations
from spatial homogeneity. The prediction (67) for intermediate times is indicated
by the black dashed line and agrees well with the numerical solutions for t =0.25,
t =0.5 and t =0.75. The inset shows that the growth of the maximum maxxh(x,t)
in time is still linear as predicted. Center: conjugate momentum density p(x,t) with
Λ = 261.057 subtracted, compared with the analytical result (68) indicated by the
black dashed line. Right: spatial maximum maxx p(x,t) over time to visualize the
long lifetime of the stationary cnoidal solution with some small boundary layers in
time at t =0 and t =1.
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Figure 5. Analytical large-ℓ results of section 5 (lines) versus numerics (dots) for
the rate function S(H̄) (left) and Lagrange multiplier Λ(H̄) (right) for a rescaled
system size of ℓ= 16π. The numerical computations were performed at resolutions
nx = 1024 and nt = 4000. The analytically found branches for the action S(H̄) and
Lagrange multiplier Λ(H̄) at large ℓ are drawn as colored lines according to the
results summarized in equation (31), with Λ(H̄) then obtained from equation (18).
The solid vertical lines indicate the theoretical critical points in the large-ℓ limit at
H̄ ≃ 4 and H̄ ≃ ℓ2/6. The dashed vertical line shows where the spatially uniform
solution becomes unstable in the (m= 11) spatial Fourier mode, as given by the
minimization of equation (27) over the allowed wave numbers. The dotted green line
corresponds to the asymptotic behavior S(H̄) = (8

√
2/3)H̄3/2 (see equation (58)).

A better resolved transition region close to H̄ = 4 is shown in figure 7.

is a smoothed-out second-order transition from branch 2 to a third branch 3 with a
different scaling behavior. The optimal paths for branches 2 and 3 are shown in figure 6.
They consist of strongly localized large-amplitude stationary solitons of p that drive an
outgoing almost triangular structure of h (or two antishocks of V (x,t) = ∂xh(x,t), see
section 5). The solution, corresponding to branch 2, clearly emerges via a subcritical,
rather than supercritical, bifurcation. Strikingly, the soliton has a well-defined lifetime
which is very close to 1/2. The difference between branches 2 and 3 is that, for branch
3, the two edges of the triangular structure of h(x,t) collide before the final time t =1
is reached, while for branch 2 they do not.

These crucial findings will guide our stationary-soliton-based asymptotic theory for
large ℓ that we develop in section 5. There we give an analytical description of the
optimal paths for branches 2 and 3, which are the only relevant ones for large ℓ. There we
establish a first-order transition at H̄ ≃ 4 for large but finite ℓ and show that it becomes
‘accidentally’ second order in the limit of ℓ→∞. We also find that the smoothed-out
second-order transition from branch 2 to branch 3 occurs at H̄ = ℓ2/6. The resulting
analytical predictions, indicated by the lines in figures 5 and 6, are in good agreement
with numerics at large, but finite, ℓ.

At moderate ℓ the transition region where the spatially uniform solution (19) of
branch 1 becomes sub-optimal is quite complex, as one can appreciate from figure 7.
We see that, in general, there are both first- and second-order transitions in this region:
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Figure 6. Numerically found least-action solutions of equations (12) and (13) for
two mean heights H̄ = 144.198 (top row) and H̄ = 507.56 (bottom row) at ℓ= 16π
with numerical resolutions nx = 2048 and nt = 4000. Both solutions are one-soliton
solutions for branches 2 and 3, respectively. The action of the solution in the top
row is S = 28723.766, which deviates by 0.4% from the predicted large-ℓ result
S = 28590.660 given by equation (50). The action for the bottom row solution is
S = 102754.528, so it deviates by 0.2% from the predicted value S = 102522.498
for this mean height given by equation (56). The qualitative difference of these
solutions is whether the two edges of the growing triangle for h collide. The left
column shows the optimal height profile h(x,t) at different times t, together with
the predictions (44), (45) and (55) for the final time t =1. The center column
shows the corresponding conjugate momentum density p(x,t). The right column
shows the spatial maximum maxx p(x,t) over time to visualize the lifetime of the
stationary soliton solution and compare it with the analytical expressions τ = 1/2
for branch 2 and equation (59) for branch 3 (dashed vertical lines).

the uniform solution becomes linearly unstable for some m > 1, leading to second-order
transitions, but there is also a competition with the (subcritical) one-soliton solution.
The subcritical scenario clearly wins for sufficiently large ℓ. Indeed, for ℓ= 32π we
observe only a first-order transition from the spatially uniform to the soliton solution,
while the linear instability becomes irrelevant.

Note that, for branch 2, in addition to stationary single-soliton solutions of the OFM
equation discussed so far, there are also stationary multi-soliton solutions consisting of
two or more (almost) non-interacting strongly localized stationary solitons of p and cor-
responding expanding triangles of h. One such solution, which we observed numerically,
is shown in the top row of figure 8. We found, however, that such solutions always have
a larger action than the one-soliton solution for the same ℓ and H̄. Therefore, the one-
soliton solution indeed seems to provide the optimal solution. In the limit ℓ→∞, these
multi-soliton solutions—a soliton gas—would contribute to the pre-exponential factor
for P(H̄,ℓ), but pre-exponential factors are beyond the scope of this paper. Additionally,
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Figure 7. Numerically computed action S(H̄) and Lagrange multiplier Λ(H̄) for
different ℓ in the transition region not far from H̄ = 4, where the transition between
branches 1 and 2 at large ℓ is predicted (see equation (31)). Using the numerical
minimization techniques described in the appendix, we search for (possibly multiple
distinct local) minimizers of the action functional (7) for given ℓ and H̄. When there
is more than one minimizer for the same ℓ and H̄, the one with the least action
gives the true optimal solution. For a better visualization we show the difference
between the numerically computed action of the found solutions and the action
ℓH̄2/2 of the spatially uniform solution. The vertical dashed lines indicate the
smallest H̄ where a spatial Fourier mode q = 2πmℓ−1 of the uniform solution first
becomes unstable according to equation (27) (m =3 for ℓ= 4π, m =5 for ℓ= 8π,
m =11 for ℓ= 16π, and m =21 for ℓ= 32π). For ℓ= 4π, 8π and 16π, the rate
function displays both a second-order transition at the predicted point and a first-
order transition at slightly larger H̄ where the one-soliton solution (see the top
row of figure 6), described theoretically in section 5.2, becomes optimal. At the
largest ℓ= 32π, only a first-order transition from the uniform to the one-soliton
solution is observed, while oscillating solutions are irrelevant. (See section 5.4 for
a more detailed analysis of the transition region at large but finite ℓ.) Note that
for ℓ= 16π one can also see, around H̄ = 4.7, another oscillating solution with a
second superimposed wave number. The following numerical resolutions were used:
nx = 128 and nt = 2000 for ℓ= 4π, nx = 512 and nt = 4000 for ℓ= 8π, nx = 1024
and nt = 4000 for ℓ= 16π, and nx = 2048 and nt = 4000 for ℓ= 32π.
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Figure 8. Two types of sub-optimal solutions to equations (12) and (13) for
ℓ= 16π. The top row (obtained with resolution nx = 2048 and nt = 4000) shows
a two-soliton solution for the same value of H̄ = 144.198 as in the top row of
figure 6. The action of the two-soliton solution, S = 28746.682, is larger than that
for the one-soliton solution for the same ℓ and H̄. The bottom row shows a spa-
tially oscillating solution, originating from linear instability of the m =11 mode of
the spatially uniform solution for H̄ ≳ 4.607 as predicted by equation (27). Here
the resolutions are nx = 1024 and nt = 4000. As can be seen from figure 7 (bottom
left), this family of solutions can be optimal for small H̄ and moderate ℓ, but it
becomes irrelevant as large ℓ.

in the bottom row in figure 8, we show an optimal path for ℓ= 16π and close to H̄ = 4,
which emerges through linear instability of the (m= 11)-mode. Later on, however, it is
overtaken by the one-soliton solution.

5. Large-ℓ asymptotics: rise and fall of the soliton

5.1. General description of the solution

Guided by our numerical solutions and by previous works on the one-point KPZ height
statistics on the line [4] and on a ring [10], here we find approximate asymptotic solutions
of equations (12)–(15) which give rise to two nontrivial branches (we call them branches
2 and 3) of the large-deviation function S(H̄) for large ℓ. As we found, for both branches
the maximum one-point height of the interface H =maxh(x,t= 1) turns out to be very
large: H ≫ 1. Therefore, in addition to the strong inequality ℓ≫ 1 we can also use
the strong inequality H ≫ 1. This allows us to construct ‘inviscid’ asymptotic solutions
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in different regions of space, separated by discontinuities of proper types. Like their
numerical counterparts, the analytical solutions exhibit two distinct stages in time,
with an abrupt transition between them at some branch-dependent intermediate time
0< t= τ < 1, which we will determine.

For 0< t < τ the solution has the form of a strongly localized stationary soliton
of p(x,t) and ‘antishock’ of V (x,t) =−∂xh(x,t) which were previously identified in
the problem of one-point height statistics on the line [4, 5] and on a ring [10]. The

characteristic width, O(1/
√
H), of the soliton–antishock structure is much less than

unity. Outside of the soliton–antishock one has p(x,t)≃ 0. As a result, equation (13) is
obeyed trivially and, at distances ≳ 1 from the soliton, h(x,t) follows the deterministic
KPZ dynamics

∂th= ∂2
xh+

1

2
(∂xh)

2 , (28)

which is equivalent to the Burgers equation

∂tV +V ∂xV = ∂2
xV (29)

for the field V (x,t) =−∂xh(x,t). In addition, the diffusion term in equation (29) can
also be neglected at large distances [4], and one arrives at the inviscid Hopf equation

∂tV +V ∂xV = 0. (30)

The stationary soliton–antishock structure drives an almost triangular configuration of
h(x,t) that is expanding outwards [4]. The height of the triangle grows linearly with
time, while its two edges propagate with a constant speed as ‘ordinary’ shocks of V (x,t)
obeying equation (29) or, when treated as discontinuities, obeying equation (30) [4].
The positions of these shocks at t =1 determine the boundaries of the ‘impact region’
of the soliton–antishock structure. When the size of the impact region, which scales as
O(

√
H) [4], is shorter than the rescaled system size ℓ (this happens when H̄ is not too

large, see below), there is also an external region where the uniform solution p(x,t) =
Λ = const and V (x,t) = 0 holds (see equation (19)). The external uniform solution holds
for all times 0< t < 1, and it contributes to the large-deviation function of H̄. In the
inviscid limit the regions of zero and nonzero p are divided by a stationary discontinuity.
This regime corresponds to branch 2.

Branch 3 appears when, due to the periodicity of the system, the ordinary shocks
of V (x,t) collide with each other before the final time t =1 is reached. In this case the
impact region of the soliton–antishock structure extends to the whole system, and a
region with a uniform solution does not appear.

For the solution to obey the boundary condition (15), the p-soliton must turn into a
constant p= Λ at t =1. Remarkably, as we have seen in our numerical results for large
ℓ, the soliton rapidly decays in the vicinity of a well-defined time t= τ < 1. For both
branches 2 and 3, the subsequent dynamics, at τ < t < 1, gives only a subleading con-
tribution (which we neglect, alongside other subleading contributions) to the maximum
one-point height H and to the action. This stage is important, however, for determining
H̄. We can qualitatively understand this nontrivial temporal structure of the solutions
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from the viewpoint of action minimization: first, for 0⩽ t⩽ τ , the interface is efficiently
driven upward by a stationary p-soliton, in the same manner as for the one-point height
PDF of the KPZ equation on the line [4] and on a ring [10]. Then, quickly suppressing
the soliton at an intermediate time 0< τ < 1 and evolving the interface according to
the almost free KPZ dynamics for τ < t⩽ 1 increases considerably the average height H̄
for a negligible additional cost in terms of action. The optimal value of τ is the one that
minimizes the action for a given H̄.

As an overview, we present here the action S(H̄,ℓ) at leading order for large ℓ, as
will be derived in sections 5.2 and 5.3:

S
(
H̄,ℓ

)
≃


H̄2

2 ℓ, −∞< H̄ ⩽ 4, (branch 1)(
4H̄ − 8

)
ℓ, 4< H̄ ⩽ ℓ2

6 , (branch 2)

H̄3/2Φ
(
H̄/ℓ2

)
, ℓ2

6 < H̄ <∞, (branch 3)

(31)

where the function Φ(. . .) is defined in equation (57) and obeys Φ(z →∞)→ 8
√
2/3.

The first line in equation (31) comes from the uniform solution (19). The first two lines
manifestly reveal the large-deviation scaling (11), while the third line does not.

Now we proceed to a more detailed description of the solutions, and we will start
with branch 2.

5.2. Branch 2

Due to a translational symmetry of the problem (12)–(15), we can place the soliton–
antishock structure at x =0 (see figure 9) so that, to the leading order, H ≃ h(0, τ).
As explained above, at H ≫ 1, the p-soliton can be considered as a point-like
object. We will only need the value of its ‘mass’,

´
dxp(x,t) which, by virtue of

equation (13), is conserved. Using the explicit expression for the soliton, p(x,t) = ps(x) =

2ccosh−2(
√

c/2x) [4], where c=H/τ , we obtain

ˆ ∞

−∞
dxps (x) =

√
32H

τ
. (32)

The base of the triangular structure of the h-profile is equal to

2a(t) =

√
2H

τ
t, (33)

while the triangle’s height is

h(0, t) =
Ht

τ
, 0< t < τ. (34)

Let us denote the total size of the impact region of the soliton–antishock structure by
2a1, where a1 ≡ a(t= 1). In the region a(t)< |x|< a1 we have

p= h= 0. (35)
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Figure 9. A space–time map of the optimal path of the system which determines
the large-deviation function S(H̄) of branch 2 in the large-ℓ limit. The thick blue
line shows the position of the stationary p-soliton and V -antishock. The thick red
lines show the positions of propagating ordinary shocks (see equation (33)). The
dashed red lines show the positions of propagating weak discontinuities caused
by the rapid decay of the p-soliton at t= τ = 1/2 (see equation (42)). The weak
discontinuities catch up with the (twice as slow) ordinary shocks at t =1. This con-
dition selects τ = 1/2. The boundaries of the impact region of the soliton–antishock
are shown by the dashed black lines. Outside the impact region, the uniform solu-
tion (45) holds. The regions between the dashed black lines and the thick dark lines
correspond to the trivial solution (35). In the regions between the dashed and thick
red lines, there remain linear h-profiles of the original ‘triangular solution’ (see
equation (36)). Inside the gray triangle the solution is described by equations (40)
and (41), leading to equation (44).

The triangular profile of h on the interval 0< |x|< a(t) is described by the
expressions [4]

p(x,t) = 0, h(x,t) =H

(
t

τ
−

√
2|x|√
Hτ

)
and V (x,t) =−∂xh(x,t) = Ṽ signx, (36)

where

Ṽ =

√
2H

τ
. (37)

As one can see from equations (33) and (37), the ordinary shocks propagate with speed

Ṽ /2, as to be expected from equations (29) or (30) [25].
After the rapid decay of the soliton at t= τ , the ‘post-soliton’ solution (in the region

to be determined) can be described by the ideal hydrodynamic equations corresponding
to the inviscid limit of equations (12) and (13)
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∂tV +V ∂xV =−∂xp, (38)

∂tp+ ∂x (pV ) = 0. (39)

The V -antishock now plays the role of a discontinuity which undergoes a decay starting
from t= τ . In the leading order we can neglect the −∂xp term, so that equation (38)
becomes the Hopf equation (30). Its solution is

V (x,t) =
x

t− τ
. (40)

Plugging equation (40) into equation (39) and using the ‘final’ condition (15) on
p(x,t= 1), we obtain

p(x,t) =
Λ(1− τ)

(t− τ)
. (41)

The solutions (40) and (41) hold at t > τ and |x|⩽ ad(t). The boundaries of this region,

x=±ad (t)≡ Ṽ (t− τ) , (42)

represent weak discontinuities, moving with the speed Ṽ , i.e. twice as fast as the ordinary
shocks at x=±a(t) (see equation (33)). Our simulations show that the weak discon-
tinuities catch up with the shocks at t =1. The corresponding condition can be written
as ad(1) = a1, and it yields τ = 1/2.6

Therefore, during the second stage of the dynamics, 1/2< t < 1, V (x,t) is described
by the following expressions:

V (|x|⩽ ad (t) , t) =
x

t− 1/2
, V (ad (t)⩽ |x|⩽ a(t) , t) =±Ṽ , V (a(t)< |x|< a1, t) = 0.

(43)

Using the relation V (x,t) =−∂xh(x,t), we can obtain the h-profile at any time 1/2<
t < 1 by integrating equation (43) over x. The result describes a parabolic profile of
h at |x|< ad(t), flanked by the linear profiles at ad(t)< |x|< a1 corresponding to the
triangular structure of h(x,t) of the first stage of the dynamics. At t =1 the parabolic
profile takes over the whole interval |x|< a1, and we obtain

h(x,t= 1) =H −x2, |x|< a1 =
√
H. (44)

At |x|> a1 the uniform solution holds:

h(|x|> a1, t) = Λt, p(|x|> a1, t) = Λ . (45)

Now we evaluate the contributions of the uniform solution to the action, ∆Su, and to
the average height, ∆H̄u, at t =1. As ℓ goes to infinity, we can neglect the difference

6 We also obtained τ = 1/2 analytically by solving the problem for a general τ and then minimizing the resulting action with
respect to τ . These calculations are somewhat cumbersome, and we do not show them here.
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between the total system length ℓ and the length of the domain of the uniform solution
ℓ− 2a1, and obtain

∆Su = Λ2ℓ/2 and ∆H̄u = Λ. (46)

The leading-order contribution of the soliton–antishock solution to the action is [4]

∆Ss =
8
√
2

3

H3/2

√
τ

=
16H3/2

3
. (47)

This contribution comes from the first stage of the process, 0< t < 1/2, while the second
stage gives only a subleading contribution, which we neglect. However, the second stage,
1/2< t < 1, does contribute to H̄. Using equation (44), we obtain

∆H̄s =
4H3/2

3ℓ
. (48)

What remains to be done is to determine Λ, to collect the contributions to S and H̄, and
to eliminate H in favor of H̄ and ℓ. In order to determine Λ, we use the local conservation
of p(x,t) evident in equation (13). Because of this local conservation law, the total soliton
‘mass’ (see equation (32)) must be equal to the integral of the solution (41) for p(x,t)
over x from -a1 to a1. This condition yields a remarkably simple result: Λ = 4, a constant
value (up to small subleading corrections). Combining equations (46)–(48), we obtain

H̄ = 4+
4H3/2

3ℓ
, S = 8ℓ+

16H3/2

3
. (49)

Eliminating H, we arrive at the leading-order result for the large-deviation function
of H̄ for branch 2 in the limit of large ℓ, which was announced in the second line of
equation (31)

S =
(
4H̄ − 8

)
ℓ. (50)

This expression obeys the large-deviation scaling (10). As expected, the actions of
branches 1 and 2 coincide at H̄ = H̄c = 4. Noticeably, their first derivatives with
respect to H̄ also coincide at this point. In addition, using equation (18), we see that
equation (50) is consistent with Λ = 4, independently of H̄, for branch 2. We will look
into these peculiarities more carefully in section 5.4.

One applicability condition of equation (50) is the strong inequality H ≫ 1. Using
the first relation in equation (49), we can rewrite this strong inequality in terms of H̄
and ℓ≫ 1:

H̄ − 4≫ 1/ℓ. (51)
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Figure 10. A space–time map of the optimal path of the system which determines
the large-deviation function S(H̄) of branch 3 in the large-ℓ limit. The notations
are similar to those of figure 9.

This condition limits H̄ from below. A condition on H̄ from above distinguishes branch
2 from branch 3. It demands that the ordinary shocks of V (x,t) do not collide with each

other until t =1.7 This condition can be written as 2
√
H < ℓ or, using equation (49),

H̄ − 4<
ℓ2

6
at ℓ≫ 1 . (52)

Now we proceed to a description of branch 3.

5.3. Branch 3

When the inequality (52) is violated, the two outgoing ordinary shocks of V (x,t) collide
with each other and merge at x=±ℓ/2 (which is the same point of the ring) at some
t < 1. Upon the merger, a single stationary shock appears (see figure 10). Now the
impact region of the soliton–antishock is the whole system, 2a1 = ℓ, and the external
region of the uniform solution, characteristic of branch 2, does not appear here.

Most of the general formulae, derived in the context of branch 2, remain valid for
branch 3. In particular, here too τ is determined by the condition that the weak discon-
tinuities catch up with the ordinary shocks at t =1. The only difference is that a1 = ℓ/2
now. Solving the equation ad(1) = a1, or√

2H

τ
(1− τ) =

ℓ

2
, (53)

7 While deriving equation (46) we demanded a strong inequality 2
√
H ≪ ℓ. However, when H̄ ≫ 1, the main contribution to S

and H̄ comes from the soliton–antishock solution rather than from the uniform one. As a result, the strong inequality 2
√
H ≪ ℓ

becomes unnecessary, and a simple inequality suffices.
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Figure 11. A plot of the function Φ(z) (blue) which enters equation (57) for the
large-deviation function S(H̄,ℓ) for branch 3 in the large ℓ limit. The dashed line
shows the large-z asymptote Φ(z →∞) = 8

√
2/3.

we obtain

τ = 1+
ℓ2

16H
− ℓ

√
ℓ2+32H

16H
, (54)

so that τ depends on H and ℓ. Unsurprisingly, equation (54) yields τ = 1/2 in the bound-
ary case H = ℓ2/4, when the size 2a1 of the impact region of the soliton–antishock
in an infinite system is equal to the system size ℓ. When H goes to infinity, τ
approaches 1.

We will not repeat here all expressions for h(x,t), V (x,t) and p(x,t) in different
regions, and present only the expression for h(x,1)

h(x,1) =H − x2

2(1− τ)
, (55)

with τ from equation (54). Using this expression, we can evaluate H̄. The action S
remains the same as in the first equality in equation (47), and we obtain

H̄ =H − 1

24

ℓ2

(1− τ)
, S =

8
√
2

3

H3/2

√
τ
. (56)

Eliminating H from these relations and using equation (54), we arrive at a leading-order
result for the large-deviation function S(H̄,ℓ) in the limit of large ℓ and very large H̄,
which was announced in the third line of equation (31)

S
(
H̄,ℓ

)
= H̄3/2Φ

(
H̄

ℓ2

)
, where Φ(z) =

2
√
2
(
9z+1+

√
18z+1

)1/2 (
36z+1+

√
18z+1

)
81z3/2

. (57)

In terms of H̄, the condition H > ℓ2/4 becomes, in the leading order, H̄ > ℓ2/6. As a
result, the function Φ(z) is defined for z ⩾ 1/6, and Φ(1/6) = 4

√
6. A graph of Φ(z) is

depicted in figure 11.
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In the limit of H̄ ≫ ℓ2 ≫ 1 equation (57) yields

S =
8
√
2

3
H̄3/2+

4

3
H̄ℓ+ . . . . (58)

The leading-order term of this expression coincides with the action for a single-point
height H [4]. This is to be expected, because, for very large H̄, τ approaches 1 and the
difference between H̄ and H becomes relatively small.

The expressions in equations (50) and (57) match in the leading order in ℓ at the
boundary H̄ ≃ ℓ2/6 between the branches 2 and 3, both giving (2/3)ℓ3+O(ℓ).

For completeness, we also present the optimal transition time τ in equation (54) in
terms of H̄ and ℓ

τ
(
H̄,ℓ

)
= 1+

ℓ2

12H̄
− ℓ

√
ℓ2+18H̄

12H̄
. (59)

5.4. Dynamical phase transition

In this subsection we resolve the nature of the DPT between branches 1 and 2, which
corresponds to the subcritical bifurcation from the uniform solution (19) to the leading-
order soliton solution discussed in section 5.2. To this end we will have to focus on
subleading corrections that we have previously ignored. We will also present the large-
deviation scaling of P(H̄,L,T ) in the limit of T → 0 at fixed L, in the physical units.

As we have already noticed, the actions S1(H̄,ℓ) and S2(H̄,ℓ), described by the
first and second lines of equation (31), coincide at H̄ = H̄c = 4 together with their first
derivatives ∂S1(H̄,ℓ)/∂H̄ and ∂S2(H̄,ℓ)/∂H̄ at H̄c = 4. It would be incorrect, however,
to conclude from here that the DPT between branches 1 and 2 at H̄ = H̄c is of second
order. Indeed, the supercritical first bifurcation of the uniform solution (19) to a solution
with a single maximum of h(x,1), the one with q = 2π/ℓ in equation (26), actually
occurs, as ℓ→∞, at much larger H̄ ≃ ℓ2/16≫ 4. Furthermore, as follows from numerical
minimization of equation (26), instability of any Fourier mode around the uniform
solution can only occur at H̄ ≃ 4.60334 (for q ≃ 1.34336). It is not surprising, therefore,
that at large but finite ℓ, and at a slightly shifted transition point H̄c > 4 where the
actions of branches 1 and 2 are equal, the optimal paths h(x,t) for branches 1 and 2,
that we found numerically, are dramatically different, and their respective Lagrange
multipliers Λ are not equal. The latter fact means, by virtue of equation (18), that at
large ℓ we actually observe a first-order DPT not a second-order one.

To make sense of these facts, we recall that equation (50) for the action of branch 2 is
merely a leading order asymptotic at ℓ→∞. Subleading terms, so far unaccounted for,
should remove the degeneracy of the leading-order results by breaking the accidental
continuity of the first derivative ∂S(H̄,ℓ)/∂H̄ at H̄ = H̄c, and rendering the corres-
ponding bifurcation subcritical and the corresponding DPT first order. The subleading
terms should also account for a slight shift of the critical point H̄c to the right from its
leading-order value H̄c = 4, as observed in our numerics.
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Motivated by the large-H asymptotic of the upper tail of the exact short-time prob-
ability distribution of the one-point height h(x= 0, t= 1) =H on the line, determined
in [12], we can conjecture the following subleading terms of S2(H̄,ℓ) at large ℓ:

S2

(
H̄,ℓ

)
=
(
4H̄ − 8

)
ℓ+BH1/2+CH−1/2+ . . . , (60)

where B > 0 and C are numerical constants O(1), which are independent of ℓ. The
condition B > 0 is necessary for the equation

S1

(
H̄c, ℓ

)
= S2

(
H̄c, ℓ

)
(61)

to have a solution for H̄c close to 4 at large ℓ.
To verify equation (60), we plotted in figure 12 our large-ℓ numerical results for[

S2(H̄,ℓ)−
(
4H̄ − 8

)
ℓ
]
/
√
H versus H. A fair plateau at large H is observed, with B ≃

5.3> 0 found by fitting. Now, keeping the first subleading term in equation (60) and
the leading-order dependence of H on H̄ in equation (49), we can rewrite equation (60)
in terms of H̄ and ℓ:

S2

(
H̄,ℓ

)
= 8ℓ+4

(
H̄ − 4

)
ℓ+

(
3

4

)1/3

B
[(
H̄ − 4

)
ℓ
]1/3

+ . . . ,
(
H̄ − 4

)
ℓ≫ 1. (62)

Now equation (61) for the critical point becomes

1

2

(
H̄c− 4

)2
ℓ=

(
3

4

)1/3

B
[(
H̄c− 4

)
ℓ
]1/3

+ . . . . (63)

Its approximate solution,

H̄c = 4+61/5B3/5 ℓ−2/5+ . . . , (64)

describes a small ℓ-dependent positive shift of the critical point from the leading-order
value 4. This H̄c corresponds to

H =

(
9

8

)2/5

B2/5ℓ2/5+ . . . (65)

of the branch 2 solution at the critical point. We observe that, for this solution, H →∞
as ℓ→∞, guaranteeing applicability of our theory at large ℓ. Going back to the large-
deviation scaling (10), we notice that there is now a small but finite jump ∼ ℓ−2/5 of
the derivative ℓ−1∂S/∂H̄ of the effective rate function at the shifted critical point. The
transition between branches 1 and 2, therefore, is of first order at large but finite ℓ.
Such transitions with a finite but small jump of the first derivative of the free energy
(or the action) are usually called weakly first order transitions [26].

By virtue of equation (18), the subleading correction in equation (62) also removes
the degeneracy of the leading-order result Λ = 4 by adding to it a small ℓ-dependent
correction that goes to zero as ℓ→∞.

Using equation (62), we plotted in figure 13 the actions of branches 1 and 2, nor-
malized by ℓH̄2, in the vicinity of the H̄ = H̄c. It is clearly seen that the subleading
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Figure 12. Numerical data from high-resolution optimal path computations at
rescaled system sizes ℓ= 8π and 16π. Assuming an asymptotic expansion (60), the
ordinate should be given by the subleading terms B+C/H with constants B and C
that are independent of ℓ and H. Accordingly, we performed least-squares fit with
this functional form to the data for 20⩽H ⩽ 125. We observe a fair agreement for
the two rescaled system sizes and determine B ≃ 5.3. For the smaller domain size
ℓ= 8π there are small oscillations that may come from sub-subleading terms not
included in equation (60).

Figure 13. The rescaled actions Sν/(ℓH̄
2) for ν=1 and ν=2 versus H̄ for a very

long domain ℓ= 128π. The result for ν=1 (branch 1) is shown by the blue lines,
the prediction of equation (62) for ν=2 (branch 2) is shown by the black lines. The
solid lines correspond to the global minima of the action, whereas the dashed lines
correspond to local but not global minima of the action. The thin dotted line shows
the asymptotic theoretical prediction for S2/(ℓH̄

2) = (4H̄ − 8)H̄−2 for ℓ→∞.

correction removes the degeneracy and makes the DPT first-order. Furthermore, the
predicted H̄c from equation (64) for ℓ= 32π, which is H̄c ≃ 4.6, is close to our numer-
ical result H̄c ≃ 4.57 for this ℓ (see figure 7).

Note that our arguments in favor of the expansion (60) are far from rigorous. In
particular, we cannot exclude a very slow (e.g. logarithmic) dependence of the coeffi-
cient B on H in equation (60) based only on the numerical evidence. However, our main
conclusion about the first-order DPT between branches 2 and 3 seems robust.
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To conclude this section, we present our large-deviation results, described by the
first two lines of equation (31), in the physical units. Recall that, by taking the limit
T → 0 at fixed L, we have both ε∝ T 1/2 → 0 and ℓ→∞. In this limit only the first two
lines of equation (31) are relevant, and we obtain8

− lim
T→0

T lnP
(
H̄,L,T

)
=

ν2

Dλ2
Lf

(
λH̄

ν

)
, where f (w) =

{
w2/2 for w < 4,
4w− 8 for w > 4.

(66)

As we elaborated in this subsection, the DPT in equation (66) at w =4 can be called an
‘accidental’ second-order DPT in the sense that the optimal paths that are responsible
for the two branches in equation (66) transition into each other discontinuously, and
that the differentiability of the rate function at the critical point emerges only in the
limit T → 0 at fixed L.

6. Small-ℓ asymptotics

We found that our numerical results on the second-order DPT at small ℓ, shown in
figures 3 and 4 and described in section 4, can be understood in terms of a small-ℓ
asymptotic solution of the OFM equations (12) and (13), which was previously found
in the context of the one-point height distribution on a ring [10]. In this solution the
interface is driven by a stationary dn2 profile (see below) of p. The solution represents
a finite-amplitude generalization of a weak sinusolidal modulation with m =1 which
results from the second-order DPT from the uniform solution. This solution is given by
the following expressions9

h(x,t)≃Ht+2lndn

[
2K (k)x

ℓ
,k

]
, (67)

p(x,t)≃ p0 (x) =

[
4K (k)

ℓ

]2
dn2

[
2K (k)x

ℓ
,k

]
, (68)

where K (k) is the complete elliptic integral of the first kind and dn(. . .) is one of the
Jacobi elliptic functions [27]. The elliptic modulus k ∈ (0,1) is determined by H via the
relation

8
(
2− k2

)
K2 (k)

ℓ2
=H. (69)

The action of this solution as a function of k is [10]

S (k) =
128

3ℓ3
K3 (k)

[
2
(
2− k2

)
E (k)−

(
1− k2

)
K (k)

]
. (70)

8 Note the factor of T instead of the customary weak-noise factor T 1/2 on the left-hand side of equation (66).
9 This solution is invalid inside narrow boundary layers in time at t =0 and t =1, but their contribution to the action is negligible.
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At given ℓ≪ 1, equations (69) and (70) determine S as a function of H in a para-
metric form. The critical point H̄ = (2π/ℓ)2 corresponds to k =0, when equations (69)
and (70) reduce to the uniform solution. k > 0 correspond to supercritical solutions.

In order to recast this dependence in terms of S(H̄,ℓ), we need to express H through
H̄ and ℓ. Although equation (67) is formally inapplicable at t =1, asymptotically as
ℓ→ 0 we still have

H − H̄ ≃−1

ℓ

ˆ ℓ/2

−ℓ/2

2lndn

[
2K (k)x

ℓ
,k

]
dx=

1

2
ln

1

1− k2
. (71)

where we have used a product formula for dn [28]. Using equations (69) and (71), we
obtain

H̄ (k) =
8
(
2− k2

)
K2 (k)

ℓ2
− 1

2
ln

1

1− k2
. (72)

Equations (70) and (72) determine S = S(H̄,ℓ) and were used in figure 3 to draw the
theoretical curves for the action and Lagrange multiplier (via equation (18)) at ℓ= π/8,
which agree very well with the numerical action minimization results. Also shown is the
asymptotic action

S
(
H̄
)
≃ 8

√
2

3
H̄3/2 (73)

as H̄ →∞, which agrees with equation (58) and can be obtained from equations (70)
and (72) by considering the limit k → 1 with E(k)→ 1 and K(k)≃ 1

2 ln
1

1−k . As one
can see from figure 4, the asymptotic relation (71) is not yet satisfied for the mod-
erately small ℓ= π/8: noticeably, the solution h(x,1) at the final time deviates from
equation (67). However, the numerically found action is already accurately described by
equations (70) and (72) because the difference between H and H̄ is always subleading,

at most O(
√
H), at small ℓ.

7. Summary and discussion

We applied the OFM to evaluate analytically and numerically the short-time PDF
P (H̄,L,t= T ), and the optimal paths which dominate this PDF, of the KPZ interface
on a ring. The short-time PDF has the scaling form (9), where ε∼ T 1/2 plays the
role of the weak-noise parameter. The phase diagram of the system represents the
(H̄,ℓ= L/

√
νT ) plane. We were especially interested in the DPTs that occur in this

system at sufficiently large positive λH̄ > 0. We found that, depending on ℓ, these DPTs
occur via either a supercritical or a subcritical bifurcation of the ‘trivial’ (uniform in
space) optimal path of the KPZ interface. The supercritical bifurcations dominate at
very small ℓ, while the subcritical bifurcations dominate at very large ℓ. In these two
limits we obtained asymptotic analytical solutions for the optimal paths of the system,
evaluated the resulting action and verified the analytical results numerically. We also
found that, as T goes to zero at constant L, the PDF acquire a simple large-deviation

https://doi.org/10.1088/1742-5468/ad0a94 26

https://doi.org/10.1088/1742-5468/ad0a94


Short-time large deviations of the spatially averaged height of a KPZ interface on a ring

J.S
tat.

M
ech.(2023)

123202

form (11) and (66). Interestingly, the rate function f(H̄) exhibits, at a critical value of
H̄ = H̄c(ℓ), a DPT which is accidentally second order.

In the (much more complicated) region of intermediate ℓ=O(1) we observed numer-
ically both supercritical and subcritical bifurcations of the uniform solution. This region
of the phase diagram is currently out of reach of analytical theory. It would be very inter-
esting, but challenging, to determine the complete phase diagram of the system in this
region. In particular, it would be interesting to locate, somewhere between ℓ= 16π and

ℓ= 32π, at least one critical point (H̄∗, ℓ∗) where the second-order DPT curve H̄
(2)
c (ℓ)

ends when it meets the first-order DPT curve H̄
(1)
c (ℓ).

These tasks will become more feasible if this problem, as described by
equations (12)–(16), joins the list of similar large-deviation OFM problems for the KPZ
equation that have been solved exactly by the inverse scattering method (ISM) [18, 20].
Indeed, as was previously found in [7], a canonical Hopf–Cole transformation brings
equations (12) and (13) into the nonlinear Schrödinger equation in imaginary space and
time. Therefore, equations (12) and (13) belong to a family of completely integrable
models. The only problem (but potentially a big one) is to adapt the ISM to a finite
system with periodic boundaries and to accommodate the problem-specific boundary
conditions (14) and (16). The exact solution would provide full analytic control of the
subleading corrections to the action of branch 2, which are currently half-empiric.

It would be very interesting to explore the possibility of extending to the spatially
averaged KPZ interface height some of the recent ‘stochastic integrability’ approaches,
which led, for selected initial conditions, to exact representations for the complete stat-
istics of the one-point interface height [29–37].

Finally, we can try to put our results into a broader perspective of DPTs in large
deviations of macroscopic systems far from equilibrium. The second-order DPT in
the present periodic KPZ system occurs when the unstructured optimal height pro-
file h(x,t) = H̄t uniformly translating in the vertical direction gives way to spatially
non-uniform height profiles via a supecritical bifurcation. This transition can be com-
pared with second-order DPTs in large deviations of the current [38–41] and of the
system activity [42] in some diffusive lattice gas models with periodic boundaries. In
each of these systems a spatially uniform state gives way to a non-uniform state via
a supercritical bifurcation. The structured states, however, have the form of simple
travelling waves, whereas in the present system they are more complicated.

A second-order DPT is also observed in large deviations of the one-point height of
a KPZ interface in an infinite system with Brownian initial conditions [7, 8, 11, 20].
The underlying bifurcation is also supercritical, but the transition mechanism is quite
different. Indeed, the optimal height profiles h(x,t) are non-uniform and essentially non-
stationary both below and above the transition, while the transition is accompanied by
a mirror symmetry breaking.

Similarly, the first-order DPT that we reported here differs from its counterpart in
large deviations of the one-point height of a KPZ interface at a shifted point in the KPZ
equation with Brownian initial conditions [11]. These differences between mechanisms
of different DPTs of the same order call for a better understanding of DPTs in general.

https://doi.org/10.1088/1742-5468/ad0a94 27

https://doi.org/10.1088/1742-5468/ad0a94


Short-time large deviations of the spatially averaged height of a KPZ interface on a ring

J.S
tat.

M
ech.(2023)

123202

Acknowledgments

The authors thank Eldad Bettelheim and Naftali R Smith for useful discussions. This
research was supported by the program ‘Advanced Research Using High Intensity Laser-
Produced Photons and Particles’ (ADONIS) (CZ.02.1.01/0.0/0.0/16019/0000789) of
the European Regional Development Fund (ERDF) (PS) and by the Israel Science
Foundation (Grant No. 1499/20) (BM).

Appendix. Numerical methods

Our numerical procedure for finding solutions h and p of the OFM problems (12)–
(16) can be summarized as follows. To compute numerical solutions to the boundary-
value problem for h and p for given ℓ and H̄, we use a refined version of the popular
Chernykh–Stepanov back-and-forth iteration algorithm [43] as described in detail in
[44], using the language of partial differential equation-constrained optimization. The
idea is to interpret the back-and-forth iterations—fixing Λ and solving equation (12)
forward in time with fixed p, and equation (13) backward in time with fixed h until
convergence—as adjoint [45] gradient evaluations δS/δp of the action functional with
fixed Λ,

S [p] =
1

2

ˆ 1

0

dt

ˆ ℓ

0

dxp2 (x,t)−Λ

ˆ ℓ

0

h [p] (x,1)dx, (A1)

with the height profile h= h[p] determined for a given p through equation (12). This
interpretation allows us to use automatic update step-size control (here, Armijo line
search [46]) and preconditioning for faster convergence (here, the L-BFGS method [47]).
Conceptually, one fixes Λ in this formulation and obtains the corresponding average
height value H̄ a posteriori.

For large ℓ we find multiple solutions for the same H̄, and the action S(H̄,ℓ) of the
optimal solution as a function of H̄ becomes nonconvex for some H̄. Nonconvexity of
the rate function S(H̄) is an issue because minimizing the functional (A1) effectively
computes the Legendre–Fenchel transform of the rate function at Λ, which may diverge
in this case. Therefore, we add a penalty term to the action, leading to the so-called
augmented Lagrangian formulation [48]

S [p] =
1

2

ˆ 1

0

dt

ˆ ℓ

0

dxp2 (x,t)−Λ

(ˆ ℓ

0

h [p] (x,1)dx− ℓH̄

)
+

µ

2

(ˆ ℓ

0

h [p] (x,1)dx− ℓH̄

)2

,

(A2)

and solve multiple minimization problems for increasing penalty parameters µ. In this
formulation, one can directly prescribe H̄ at the cost of solving multiple optimization
problems, and it is usable regardless of convexity of the rate function, or in other words
regardless of bijectivity of the map between H̄ and Λ.

The formulation (A1) is more convenient for tracing solution branches: one ini-
tializes the optimization on an already found solution on a given branch and slightly
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changes Λ. In order to trace branches close to the transition region for large ℓ in the
nonconvex case, we temporarily reparameterize the observable as described in [49] with
reparameterizations g(z) = lnlnz or g(z) = 1− exp{−(z− 3.5)}.

Within this general framework, we use a pseudo-spectral code with spatial resolution
nx to solve equations (12) and (13), with an exact integration of the diffusion terms
through an integrating factor in Fourier space. An explicit second-order Runge–Kutta
integrator with nt equidistant steps is used in time. The gradient of the action functional
is evaluated exactly on a discrete level (‘discretize, then optimize’). A Python source
code which illustrates the optimization methods in a simple toy problem can be found
in a public GitHub repository [50] and it is explained in [51].

An important property of equations (12) and (13) is their exact integrability [7,
18, 20]. It is convenient to exploit it for monitoring the accuracy of our numerical
discretization scheme. To this end we followed in time the first five conserved quantities
of the continuous system [18]

c1 =

ˆ
p dx (A3)

c2 =

ˆ
p∂xh dx (A4)

c3 =

ˆ
p

[
∂xxh+

1

2
(∂xh)

2+
1

2
p

]
dx (A5)

c4 =

ˆ
p

[
∂xxxh+

3

2
∂xh∂xxh+

1

4
(∂xh)

3+
1

2
∂xp+

3

4
p∂xh

]
dx (A6)

c5 =

ˆ
p

[
∂xxxxh+

3

2
(∂xxh)

2+
1

8
(∂xh)

4+2∂xh∂xxxh+
3

2
(∂xh)

2∂xxh

+
1

8
∂xh [2∂xp+3p∂xh] +

1

4
[2∂xxp+3∂xp∂xh+3p∂xxh]

+
1

8
p(∂xh)

2+
1

2
p

[
∂xxh+

1

2
(∂xh)

2+
1

2
p

]]
dx (A7)

for the optimal paths that we calculated numerically. The code conserves c1 up to
machine precision, but the higher ci are only approximately conserved. For instance,
for the optimal path shown in the top row of figure 6, for the nonzero quantities c3
and c5, we obtain conservation within 0.3% and 0.6%, respectively, for our numerical
solution. For other optimal paths at different H̄ and ℓ, we observe a similar, sufficiently
high, accuracy of the conservation of c3 and c5 in our numerical results. (The quantities
c2 and c4 should theoretically be equal to 0 for all times due to the initial condition
h(x,t= 0) = 0 and periodic boundary conditions in space. They are less convenient,
therefore, for the analysis of relative accuracy of numerical results.)

Due to the fixed and small time interval 0⩽ t⩽ 1, intrinsic to the problem of short-
time statistics of the KPZ interface, there are no adverse consequences of the violation of
exact conservation of the quantities ci. This violation would be a more serious problem
if we were to attempt to advance the solution until long times, t≫ 1. For this reason we
have not derived an integrable discretization in space and time, but such discretizations
do exist. They are described in detail, for example in the monograph [52].
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